Arachidonic acid protects neonatal rat cardiac myocytes from ischaemic injury through epsilon protein kinase C.

نویسندگان

  • K Mackay
  • D Mochly-Rosen
چکیده

OBJECTIVES Arachidonic acid is a second messenger which activates protein kinase C (PKC) and is released from the heart during ischaemic preconditioning. The purpose of this study was to examine the effect of arachidonic acid on activation of PKC in cardiac myocytes and the cellular consequences. METHODS Neonatal rat cardiac myocytes were isolated and maintained in culture. Arachidonic acid-induced activation of PKC was examined by cell fractionation and western blot analysis. Contraction frequency was measured by visual inspection under a microscope. Ischaemia was simulated by subjecting cells to an atmosphere of lower than 0.5% oxygen in the absence of glucose and cell damage determined by release of cytosolic lactate dehydrogenase or direct cell viability assay. RESULTS Arachidonic acid resulted in translocation of delta and epsilonPKC but not alpha, betaII, eta or zetaPKC isozymes, indicating activation of only delta and epsilonPKC. Arachidonic acid induced a dose-dependent decrease in spontaneous contraction rate of cardiac myocytes which was blocked by a selective peptide translocation inhibitor of epsilonPKC. Pretreatment with arachidonic acid partially protected cardiac myocytes against ischaemia. Down-regulation of PKC with 24 h 4beta-phorbol,12-myristate,13-acetate treatment, inhibition of PKC by chelerythrine and selective inhibition of epsilonPKC translocation all decreased the protective effect of arachidonic acid. Pretreatment with eicosapentaenoic acid or oleic acid also protected cardiac myocytes against ischaemia. CONCLUSIONS These results demonstrate that arachidonic acid selectively activates delta and epsilonPKC in neonatal rat cardiac myocytes, leading to protection from ischaemia. We suggest this is a potential mechanism of PKC activation during PC. In addition, our results suggest that different classes of free fatty acid directly exert cardioprotection from ischaemic injury in cardiac myocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myofilament anchoring of protein kinase C-epsilon in cardiac myocytes.

Regulatory proteins on muscle filaments are substrates for protein kinase C (PKC) but mechanisms underlying activation and translocation of PKC to this non-membrane compartment are poorly understood. Here we demonstrate that the epsilon isoform of PKC (epsilon-PKC) activated by arachidonic acid (AA) binds reversibly to cardiac myofibrils with an EC(50) of 86 nM. Binding occurred near the Z-line...

متن کامل

Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes.

Cardiac myocytes coexpress multiple protein kinase C (PKC) isoforms which likely play distinct roles in signaling pathways leading to changes in contractility, hypertrophy, and ischemic preconditioning. Although PKC has been reported to be activated during myocardial ischemia, the effect of ischemia/hypoxia on individual PKC isoforms has not been determined. This study examines the effect of hy...

متن کامل

Urocortin increases the expression of heat shock protein 90 in rat cardiac myocytes in a MEK1/2-dependent manner.

We have previously demonstrated that urocortin protects cultured cardiac myocytes from ischaemic and reoxygenation injury and decreases the infarct size in the rat heart exposed to regional ischaemia and reperfusion. Urocortin-mediated cardioprotection is via activation of the mitogen-activated protein kinase (MAP kinase, MEK1/2) pathway. In addition, it is well documented that heat shock prote...

متن کامل

Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial K(ATP) channel conferring cardioprotection against hypoxic injury.

BACKGROUND AND PURPOSE Diazoxide, a well-known opener of the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, has been demonstrated to exert cardioprotective effect against ischemic injury through the mitoK(ATP) channel and protein kinase C (PKC). We aimed to clarify the role of PKC isoforms and the relationship between the PKC isoforms and the mitoK(ATP) channel in diazoxide-induced...

متن کامل

Effect of pre-treatment with oxytocin on cardiac enzymes in regional ischemiareperfusion injury induced in the rat heart

Introduction: Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) induced cardioprotection and its signaling pathways on lactate dehydrogenase (LDH) and creatine kinase-MB isoenzyme (CK-MB) in the anesthetized rats. Methods: Ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 50 1  شماره 

صفحات  -

تاریخ انتشار 2001